Zariski geometries

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-commutative Zariski geometries and their classical limit

We undertake a case study of two series of nonclassical Zariski geometries. We show that these geometries can be realised as representations of certain noncommutative C∗-algebras and introduce a natural limit construction which for each of the two series produces a classical U(1)-gauge field over a 2-dimensional Riemann surface.

متن کامل

Relative Riemann - Zariski

Let k be an algebraically closed field andK be a finitely generated k-field. In the first half of the 20-th century, Zariski defined a Riemann variety RZK(k) associated to K as the projective limit of all projective k-models of K. Zariski showed that this topological space, which is now called a Riemann-Zariski (or Zariski-Riemann) space, possesses the following set-theoretic description: to gi...

متن کامل

The Basic Zariski Topology

We present the Zariski spectrum as an inductively generated basic topology à la Martin-Löf and Sambin. Since we can thus get by without considering powers and radicals, this simplifies the presentation as a formal topology initiated by Sigstam. Our treatment includes closed and open subspaces: that is, quotients and localisations. All the effective objects under consideration are introduced by ...

متن کامل

Fiber Products and Zariski Sheaves

Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also morphisms πX : X → Z, πY : Y → Z. Given this data, we say that an object P of C, together with morphisms p1 : P → X, p2 : P → Y is a fiber product of X with Y over Z if it satisfies the following universal property: For every object T ∈ Obj(C), and every pair of morphisms f : T → X, g : T → Y such that πX ◦ f = πY ◦ g, ther...

متن کامل

Zariski Pairs on Sextics Ii

We continue to study Zariski pairs in sextics. In this paper, we study Zariski pairs of sextics which are not irreducible. The idea of the construction of Zariski partner sextic for reducible cases is quit different from the irreducible case. It is crucial to take the geometry of the components and their mutual intersection data into account. When there is a line component, flex geometry (i.e.,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Mathematical Society

سال: 1996

ISSN: 0894-0347,1088-6834

DOI: 10.1090/s0894-0347-96-00180-4